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SHEAR WITH AN INFINITELY NARROW PLASTIC ZONE
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A simple model of longitudinal shear with a plastic zone at the tip of the crack is considered
in the paper. The plasticity zone is assumed to be narrow, and fulfillment of the Mises con-~
dition is stipulated on its boundary. The crack moves with a constant velocity without change
in the length.

When a crack propagates in a preliminarily deformed elastic body, a part of the elastic energy of the
body is irreversibly converted into heat energy produced in a plasticity zone at the crack tip and, possibly,
goes into some other energy losses that accompany fracture. If the fracture takes place in a quasi-brittle
manner, i.e., material everywhere except in a small region of the tip of the crack behaves elastically, then
we can imagine that the crack tip is a kind of source of elastic energy whose intensity is determined by the
velocity of the crack and the singularity coefficients of the stress field, according to the known law [1, 2]
for an elastic body with a moving cut.

According to this law the amount of energy per unit area of the crack, emerging irreversibly from
the elastic body into the vicinity of the crack tip, is increased with an increase in the velocity of the crack
and the singularity coefficients of the stress field,

Fxperiments with photoelastic materials [3, 4] showed that if, for example, we subject a rectangular
plate, containing some initial crack, to tension with an increasing force, then at a certain critical stress
the crack begins to move with increasing velocity and tears through the entire testpiece, Here the singu-
larity coefficient of stresses turns out to be a function which monotonically grows with the length of the
crack,

From what has been said it follows that the amount of energy per unit area of the crack also grows
monotonically; here the specific energy expenditure can increase 2-3 times. A model with a constant sur-
face energy is not satisfactory here. In the given investigation we consider a simple model of longitudinal
shear with a plastic zone at the tip of a crack which moves with a steady state, The plasticity zone is as-
sumed to be narrow; fulfillment of the Mises condition is stipulated on its boundary. The formulation and
solution of such a problem in a static case is given in {5]. The crack moves also as assumed in [6], with a
constant velocity v, without a change in the length,

We consider the motion of such a crack of length 2x, in an infinite elastic body which is subjected at
infinity to the stress Tyz=T The only nonzero displacement — the displacement about the z axis — satis~
fies the equation ‘

el

82w w1 Pw 1)
a2 T & e
Here c is the velocity of transverse waves., The components of the stress tensor are zero, except
Tyz and T, which are given by the relationships
dw ow 92
Tuz=l1-'5y—, Txz = P37~ @)

where p is the shear modulus.
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v 7
g Y4 ; Let the crack move along the straight line y=0. We
U nonox RN make the following substitution of variables:

A 8 D }/ : X=z—ot, YV =0y B=00—02/cH)n
7 Then Egs, (1) and (2) assume the form
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Z It can be shown that the complex stress function
7 ¢ 4 7 .
-4 4 N/ —zz] A4 T =Ty + it (Ty =Ty, Te = PTx)
‘ b is an analytic function of the complex variable {=X +iY.

Fig. 2 In view of symmetry we can confine ourselves to the con-
sideration of the region Re { > 0. Just as in [7-9] we as-
sume that the plastic zones are infinitely narrow and constitute segments of the X axis so that Xj<X<X;,
Y=90. In addition to this, we assume that at the boundary of the plastic zones the condition of Mises

Vet + Tz - T @)
is fulfilled,

Here v is the yield point; consequently, in the entire elastic region the condition (r_,?+7,, 3/ ?< vy
must be fulfilled. The region of variation of 7, corresponding to the region Re £ > 0, is the interior of a
half ellipse with the semiaxes v and By and a cut along the real axis from 0 to T =7, (Fig. 1).

The first quadrant of the ellipse Re 7 > 0, Im T > 0 corresponds to the region £
Re >0, Im{ <0
We introduce a functiong =& (7)into the analysis; we have the following boundary value problem for it:

Ret=0, O0<Imv<Pr

Img =0 for (Vi /F=r, Olagrln/2
Imtv=0, 71.<Retv<y
Re{ =0 for Im71 =0, O0<<Ret <1 @)

The function

Ty ==

Ty — e 4 (14 B\
In T _Tln(i——ﬁ>
realizes a conformal mapping of the interior of the upper quadrant of the ellipse onto the interior of a rec-
tangle with vertices at the points (—b, 0), (+b, 0), where b=1/, In [(1+B)/(1“'B)]I/2, and the height ©/2 (Fig.

2a). The function

11:08
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(5)

gives a conformal mapping of the upper half-plane Im 7, > 0 onto the interior of the rectangle in the region
7,, where 7,=+1 is transformed into 7, =*b, while the points 7,=+k™! are transformed respectively into
T,==+b +in/2 (Fig. 2b}. The function, reciprocal to (5)

T, =sn {1;,C, k) } (6
gives a conformal mapping of the interior of the rectangle in the region 7; onto the upper half-plane of the
region T,.

The parameters C and k in (5) are determined from the equations [10]
1

1 1+8 v
b=—Ih] == = ?
z 1—p CS Vi —w) (1 — o) CRE)

0

i dr
5 =C SO, | S—— g
2 bt V("-'ZZ — 1) (1 — k1% CK (k ) (7)

From a simultaneous solution of these equations for a given velocity v/c, we find C and k, and with
this the mapping is completely defined.
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In the case of the mapping (6) the point 7=0 is transformed into 7,=
—1/k, while T =7, is transformed into 7,=a, which is located in the interval

L i
X i
! from —1/k to +1, when 7,, varies from 0 to Y. The problem (4) for the
'y ! function {= {r) in the region 7, is brought to the mixed houndary value
! problem of Keldysh—Sedov (Fig. 2b)
i
! — oo < Rety << —1/E, Imt, =0
a0 ImC:O}fqrf{“<Re‘Fz< +- 00, Imﬁl::=0
/ Re { =0-for —1/k < Ret, < @, Im v, =0
1
/I The general solution of this problem is
1 OO ——
20 + _ Tt 17k
- II’ y L= dl/ tata
/
/,/ 7 : The upper sign is taken in the case where —1/k<a <0, while the lower
Y e~ ; sign is taken where 0<a <1. The constant d is determined from the condi-
04 08 %o [y tion that £ =X, for 7 =ify (or inthe 7, plane 7,=1/k corresponds toit). Hence
Fig, 3 .
{tak 1]k
t=x) & ]/ A ®)
The quantity X;, which determines the position of the end of the plastic zone, is found from the condi-
tion ¢ =X, for 7=y (or in the 7, region for 7,=1), and finally we can write
9

X, 4/ UFaiy(A 3R
X 2E (1 +a)

In particular, for v/c=7,/y we have X/X;=(1+k)/2vk.
The available tables do not allow us to find C and k from the erpression (7) for v/c > 0.6. For this

we consider the limiting case v/c=q—1.
Here, from Eqgs. (7), using asymptotic representations of elliptic integrals, we obtain
_ w2 _Vi—=
k~4exp—-%, C~-—E-—:

I{ at the same time v/C <7, /v, then the point @ is located in the interval (—1/k, =1), From (5) we
(10)

obtain an expression for determining a in the form [11]
- Vet 27 I v
— -+ arctg 7T =—C _§/;; Ta—ha o

In the approximation being considered, this equation is represented in the form
Vi—d [an 4 Archa——i—-{—%—a Var— 1]
11)

VE=Z T
arc tg e ~ -

U<a<i/h)
In Fig. 3 we have represented the results of the calculation according to the expression (9) by dashed
lines (curve 3 corresponds to v/c=0.5, while curve 4 corresponds to v/c=0.9), The curve corresponding

to v/e =0.1 practically coincides withthe static curve 2 ofthe investigation [5].
T‘z _‘_ —rwi

£ TP — T2

On this graph curve 1 depicts the solution [8] obtained with the condition that Tyz is constant in the

plasticity zone
o LU !
N [cos 2 ]

A typical distribution of ‘ryz/'y and Ty,/7v along the length of the plastic zone, and also the dimension-
less displacement pw/yX, along the length of the plastic zone, are depicted in Fig, 4 for v/c=0.5 and 7/y =

0.8.
The relationship of the dimensionless displacement pw/vX, at the end of the plasticity zone, i.e., at
the point ¢ =X, dependent on 'rw/'y for v/c=0.0, 0.5, 0.9 is depicted in Fig. 5 by curves 1, 2, 3, respec-

tively.
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For the formulation used in the investigation, the energy of the elas-
v/e L tic body, when the crack develops, is transformed into plastic k. We
78 "] Y ps, plastic work.
o I determine the amount of plastic work per unit length of the crack during

// its motion by the expression

X4
a4 i dw
op =2\ Tgy-dX 12)
Xo
’ 55'/ ¢ In the case of a brittle fracture, G, the intensity of liberation of
7 J 5 7 elastic energy per unit length, as follows from [12], equals
Fig. 6 .
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0

for a crack of length 2X, and the stress 7, =7» at infinity. In the static case, using the solution of [5] and

y
the expression (12), we obtain
X,
2 (M= P VI —X) (X2 — XY
8=~ Tr 3 )S e ax

We note that in the case where the length of the plastic zone is small, i.e., when Tw/ v <1, this ex~
pression with accuracy up to terms of the order 7..%/4? has the form

B, = T2 X/ 20
which coincides with the results obtained from the theory of brittle fracture,

Forte/v =0.4, 0.8 in Fig. 6 we have depicted the dependence of Sg/G on the value v/c. The upper
curve corresponds to the value T,/ =0.4.

The graph just presented shows that indeed the amount of energy expended in plastic work increases
as the velocity of the crack grows and the stress at infinity increases. Also the dimension of the plastic
zone according to Fig. 3 and the displacement at the crack tip X=X, (Fig. 5) vary. Hence, for example, it
follows that if in the role of criterion of fracture we take the displacement at the crack tip, then the critical
value of such a displacement must depend on the velocity of the crack and the loading parameters,
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